electrochem: Electrochemistry data parser

This module handles the reading and processing of files containing electrochemical data, including BioLogic’s EC-Lab file formats.

Note

This interface is not yet final and will change with version 5.0.0

Usage

The usage of electrochem can be specified by supplying electrochem as an argument to the parser keyword of the dataschema. The parser supports the following parameters:

pydantic model dgbowl_schemas.yadg.dataschema_4_1.step.ElectroChem.Params

Show JSON schema
{
   "title": "Params",
   "type": "object",
   "properties": {
      "filetype": {
         "title": "Filetype",
         "default": "eclab.mpr",
         "enum": [
            "eclab.mpt",
            "eclab.mpr",
            "tomato.json"
         ],
         "type": "string"
      }
   },
   "additionalProperties": false
}

field filetype: Literal['eclab.mpt', 'eclab.mpr', 'tomato.json'] = 'eclab.mpr'

Formats

The currently supported file formats are:

  • EC-Lab raw data binary file and parameter settings eclabmpr

  • EC-Lab human-readable text export of data eclabmpt

  • tomato’s structured json output tomatojson

Provides

The basic function of the parser is to:

  1. Read in the technique data and create timesteps.

  2. Collect metadata, such as the measurement settings and the loops contained in a given file.

  3. Collect data describing the technique parameter sequences.

Note

.mpt files can contain more data than the corresponding binary .mpr file.

Most techniques write data that can be understood as a series of timesteps. Each timestep provided by the parser has the following format:

- fn   !!str
- uts  !!float
- raw:
    "{{ col1 }}":  !!int
    "{{ col2 }}":
      {n: !!float, s: !!float, u: !!str}

For impedance spectroscopy techniques (PEIS, GEIS), the data is made up of spectroscopy traces. The data is thus split into traces by the column "cycle number" and each trace is cast into a single timestep. Each trace now corresponds to a spectroscopy scan, indexed by the technique name (PEIS or GEIS). The timestep takes the following format:

- fn   !!str
- uts  !!float
- raw:
    traces:
      "{{ technique }}":
        "{{ col1 }}":
            [!!int, ...]
        "{{ col2 }}":
            {n: [!!float, ...], s: [!!float, ...], u: !!str}

Note

The parsed data may contain infinities (i.e. float("inf") / float("-inf")) or NaNs (i.e. float("nan")). While datagrams containing NaN and Inf can be exported and read back using python’s json module, they are not strictly valid jsons.

TODO

https://github.com/dgbowl/yadg/issues/10

Current values of the uncertainties "s" are hard-coded from VMP-3 values of resolutions and accuracies, with math.ulp(n) as fallback. The values should be device-specific, and the fallback should be eliminated.

TODO

https://github.com/dgbowl/yadg/issues/11

The “raw” data in electrochemistry files should only contain the raw quantities, that is the control_I or control_V and the measured potentials Ewe, Ece or the measured current I. Analogous quantities should be recorded for PEIS/GEIS. All other columns should be computed by yadg.

Metadata

The metadata collected from the raw file will depend on the filetype. Currently, no metadata is recorded for tomato.json filetype. For the eclab.mpt and eclab.mpr filetypes, the metadata will contain a settings and a params field:

The settings field for parsed .mpt files contains the technique name, a posix timestamp and the raw header lines as found in the file. The settings from parsed .mpr files contain the technique and more explicitly parsed information than from .mpt files, like the “cell characteristics” specified in EC-Lab.

The params will contain the technique parameter sequences and the keys in each sequence will be the same independent of filetype, but an int value in the .mpr file may be a str when parsed from the corresponding .mpt file, since the mapping has not yet been reverse engineered.

TODO

https://github.com/dgbowl/yadg/issues/12

In .mpr files, some technique parameters in the settings module correspond to entries in drop-down lists in EC-Lab. These values are stored as single-byte values in .mpr files.

The metadata from parsed ".mpr" files also provides the "log" which contains more general parameters, like software, firmware and server versions, channel number, host address and an acquisition start timestamp in Microsoft OLE format.

Note

If the .mpr file contains an ExtDev module (containing parameters of any external sensors plugged into the device), the log is usually not present and therefore the full timestamp cannot be calculated.

Submodules

eclabmpr: Processing of BioLogic’s EC-Lab binary modular files.

.mpr files are structured in a set of “modules”, one concerning settings, one for actual data, one for logs, and an optional loops module. The parameter sequences can be found in the settings module.

This code is partly an adaptation of the galvani module by Chris Kerr, and builds on the work done by the previous civilian service member working on the project, Jonas Krieger.

These are the implemented techniques for which the technique parameter sequences can be parsed:

CA

Chronoamperometry / Chronocoulometry

CP

Chronopotentiometry

CV

Cyclic Voltammetry

GCPL

Galvanostatic Cycling with Potential Limitation

GEIS

Galvano Electrochemical Impedance Spectroscopy

LOOP

Loop

LSV

Linear Sweep Voltammetry

MB

Modulo Bat

OCV

Open Circuit Voltage

PEIS

Potentio Electrochemical Impedance Spectroscopy

WAIT

Wait

ZIR

IR compensation (PEIS)

File Structure of .mpr Files

At a top level, .mpr files are made up of a number of modules, separated by the MODULE keyword. In all the files I have seen, the first module is the settings module, followed by the data module, the log module and then an optional loop module.

0x0000 BIO-LOGIC MODULAR FILE  # File magic.
0x0034 MODULE                  # Module magic.
...                            # Module 1.
0x???? MODULE                  # Module magic.
...                            # Module 2.
0x???? MODULE                  # Module magic.
...                            # Module 3.
0x???? MODULE                  # Module magic.
...                            # Module 4.

After splitting the entire file on MODULE, each module starts with a header that is structured like this (offsets from start of module):

0x0000 short_name  # Short name, e.g. VMP Set.
0x000A long_name   # Longer name, e.g. VMP settings.
0x0023 length      # Number of bytes in module data.
0x0027 version     # Module version.
0x002B date        # Acquisition date in ASCII, e.g. 08/10/21.
...                # Module data.

The contents of each module’s data vary wildly depending on the used technique, the module and perhaps the software version, the settings in EC-Lab, etc. Here a quick overview (offsets from start of module data).

Settings Module

0x0000 technique_id           # Unique technique ID.
...                           # ???
0x0007 comments               # Pascal string.
...                           # Zero padding.
# Cell Characteristics.
0x0107 active_material_mass   # Mass of active material
0x010B at_x                   # at x =
0x010F molecular_weight       # Molecular weight of active material
0x0113 atomic_weight          # Atomic weight of intercalated ion
0x0117 acquisition_start      # Acquisition started a: xo =
0x011B e_transferred          # Number of e- transferred
0x011E electrode_material     # Pascal string.
...                           # Zero Padding
0x01C0 electrolyte            # Pascal string.
...                           # Zero Padding, ???.
0x0211 electrode_area         # Electrode surface area
0x0215 reference_electrode    # Pascal string
...                           # Zero padding
0x024C characteristic_mass    # Characteristic mass
...                           # ???
0x025C battery_capacity       # Battery capacity C =
0x0260 battery_capacity_unit  # Unit of the battery capacity.
...                           # ???
# Technique parameters can randomly be found at 0x0572, 0x1845 or
# 0x1846. All you can do is guess and try until it fits.
0x1845 ns                     # Number of sequences.
0x1847 n_params               # Number of technique parameters.
0x1849 params                 # ns sets of n_params parameters.
...                           # ???

Data Module

0x0000 n_datapoints  # Number of datapoints.
0x0004 n_columns     # Number of values per datapoint.
0x0005 column_ids    # n_columns unique column IDs.
...
# Depending on module version, datapoints start 0x0195 or 0x0196.
# Length of each datapoint depends on number and IDs of columns.
0x0195 datapoints    # n_datapoints points of data.

Log Module

...                         # ???
0x0009 channel_number       # Zero-based channel number.
...                         # ???
0x00AB channel_sn           # Channel serial number.
...                         # ???
0x01F8 Ewe_ctrl_min         # Ewe ctrl range min.
0x01FC Ewe_ctrl_max         # Ewe ctrl range max.
...                         # ???
0x0249 ole_timestamp        # Timestamp in OLE format.
0x0251 filename             # Pascal String.
...                         # Zero padding, ???.
0x0351 host                 # IP address of host, Pascal string.
...                         # Zero padding.
0x0384 address              # IP address / COM port of potentiostat.
...                         # Zero padding.
0x03B7 ec_lab_version       # EC-Lab version (software)
...                         # Zero padding.
0x03BE server_version       # Internet server version (firmware)
...                         # Zero padding.
0x03C5 interpreter_version  # Command interpretor version (firmware)
...                         # Zero padding.
0x03CF device_sn            # Device serial number.
...                         # Zero padding.
0x0922 averaging_points     # Smooth data on ... points.
...                         # ???

Loop Module

0x0000 n_indexes  # Number of loop indexes.
0x0004 indexes    # n_indexes indexes at which loops start in data.
...               # ???

Structure of Parsed Data

EIS Techniques (PEIS/GEIS)

- fn   !!str
- uts  !!float
- raw:
    traces:
      "{{ technique name }}":
        "{{ col1 }}":
          [!!int, ...]
        "{{ col2 }}":
          {n: [!!float, ...], s: [!!float, ...], u: !!str}

All Other Techniques

- fn   !!str
- uts  !!float
- raw:
    "{{ col1 }}":  !!int
    "{{ col2 }}":
      {n: !!float, s: !!float, u: !!str}
yadg.parsers.electrochem.eclabmpr.process(fn, encoding='windows-1252', timezone='localtime')

Processes EC-Lab raw data binary files.

Parameters
  • fn (str) – The file containing the data to parse.

  • encoding (str) – Encoding of fn, by default “windows-1252”.

  • timezone (str) – A string description of the timezone. Default is “localtime”.

Returns

(data, metadata, fulldate) – Tuple containing the timesteps, metadata, and the full date tag. For mpr files, the full date is specified if the “LOG” module is present.

Return type

tuple[list, dict, bool]

eclabmpt: Processing of BioLogic’s EC-Lab ASCII export files.

.mpt files are made up of a header portion (with the technique parameter sequences and an optional loops section) and a tab-separated data table.

A list of techniques supported by this parser is shown in the techniques table.

File Structure of .mpt Files

These human-readable files are sectioned into headerlines and datalines. The header part at is made up of information that can be found in the settings, log and loop modules of the binary .mpr file.

If no header is present, the timestamps will instead be calculated from the file’s ctime.

Structure of Parsed Data

EIS Techniques (PEIS/GEIS)

- fn   !!str
- uts  !!float
- raw:
    traces:
      "{{ technique name }}":
        "{{ col1 }}":
          [!!int, ...]
        "{{ col2 }}":
          {n: [!!float, ...], s: [!!float, ...], u: !!str}

All Other Techniques

- fn   !!str
- uts  !!float
- raw:
    "{{ col1 }}":  !!int
    "{{ col2 }}":
      {n: !!float, s: !!float, u: !!str}
yadg.parsers.electrochem.eclabmpt.process(fn, encoding='windows-1252', timezone='UTC')

Processes EC-Lab human-readable text export files.

Parameters
  • fn (str) – The file containing the data to parse.

  • encoding (str) – Encoding of fn, by default “windows-1252”.

  • timezone (str) – A string description of the timezone. Default is “UTC”.

Returns

(data, metadata, fulldate) – Tuple containing the timesteps, metadata, and the full date tag. For mpt files, the full date might not be specified if header is not present.

Return type

tuple[list, dict, bool]

tomatojson: Processing of tomato electrochemistry outputs.

This module parses the electrochemistry json files generated by tomato.

Warning

This parser is brand-new in yadg-4.1 and the interface is unstable.

Four sections are expected in each tomato data file:

  • technique section, describing the current technique,

  • previous section, containing status information of the previous file,

  • current section, containing status information of the current file,

  • data section, containing the timesteps.

The reason why both previous and current are requires is that the device status is recorded at the time of data polling, which means the values in current might be invalid (after the run has finished) or not in sync with the data (if a technique change happened). However, previous may not be present in the first data file of an experiment.

To determine the measurement errors, the values from BioLogic manual are used: for measured voltages (\(E_{\text{we}}\) and \(E_{\text{ce}}\)) this corresponds to a constant uncertainty of 0.004% of the applied E-range with a maximum of 75 uV, while for currents (\(I\)) this is a constant uncertainty of 0.0015% of the applied I-range with a maximum of 0.76 uA.

yadg.parsers.electrochem.tomatojson.process(fn, encoding='UTF-8', timezone='UTC')
Return type

tuple[list, dict, bool]

eclabtechniques: Parameters for implemented techniques.

Implemented techniques:

CA - Chronoamperometry / Chronocoulometry CP - Chronopotentiometry CV - Cyclic Voltammetry GCPL - Galvanostatic Cycling with Potential Limitation GEIS - Galvano Electrochemical Impedance Spectroscopy LOOP - Loop LSV - Linear Sweep Voltammetry MB - Modulo Bat OCV - Open Circuit Voltage PEIS - Potentio Electrochemical Impedance Spectroscopy WAIT - Wait ZIR - IR compensation (PEIS)

The module also implements resolution determination for parameters of techniques, in get_resolution().

TODO

https://github.com/dgbowl/yadg/issues/10

Current values of the uncertainties "s" are hard-coded from VMP-3 values of resolutions and accuracies, with math.ulp(n) as fallback. The values should be device-specific, and the fallback should be eliminated.

yadg.parsers.electrochem.eclabtechniques.get_resolution(name, value, Erange, Irange)

Function that returns the resolution of a property based on its name, value, E-range and I-range.

The values used here are hard-coded from VMP-3 potentiostats. Generally, the resolution is returned, however in some cases only the accuracy is specified (currently freq and Phase).

Return type

float

yadg.parsers.electrochem.eclabtechniques.param_from_key(param, key, to_str=True)

Convert a supplied key of a certain parameter to its string or float value.

The function uses the map defined in param_map to convert between the entries in the tuples, which contain the str value of the parameter (present in .mpt files), the int value of the parameter (present in .mpr files), and the corresponding float value in SI units.

Parameters
  • param (str) – The name of the parameter, a key within the param_map. If param is not present in param_map, the supplied key is returned back.

  • key (Union[int, str]) – The key of the parameter that is to be converted to a different representation.

  • to_str (bool) – A switch between str and float output.

Returns

key – The key converted to the requested format.

Return type

Union[str, float, int]

yadg.parsers.electrochem.eclabtechniques.technique_params(technique, settings)

Constructs the parameter names for different techniques.

Parameters
  • technique (str) – The full name of the technique.

  • settings (list[str]) – The list of settings from the start of an .mpt or .mps file.

Returns

The short technique name and a full list of technique parameter names depending on what is present in the file.

Return type

tuple[str, list]

yadg.parsers.electrochem.main.process(fn, encoding='windows-1252', timezone='localtime', parameters=None)

Unified parser for electrochemistry data.

Parameters
  • fn (str) – The file containing the data to parse.

  • encoding (str) – Encoding of fn, by default “windows-1252”.

  • timezone (str) – A string description of the timezone. Default is “localtime”.

  • parameters (Optional[BaseModel]) – Parameters for ElectroChem.

Returns

(data, metadata, fulldate) – Tuple containing the timesteps, metadata, and full date tag. The currently implemented parsers all return full date.

Return type

tuple[list, dict, bool]